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ABSTRACT

The application of the dyadic Green’s function technique
to a number of electromagnetic problems invclving a perfectly
conducting half-plane sheet is discussed. A derivation of the
dyadic Green's function 1is given by the method of Fourier and
Hankel transforms. Several sets of curves have been presented
to show the radiation patterns in the principal plane for
different excitations. The radiation resistance oi a quarter-
wave monopole attached to the edge of a half-plane sheet, and

that of a half-wave dipole placed parallel to the edge of the
sheet are also evaluated.
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RADIATION FROM CURRENT ELEMENTS AND APERTURES
IN THE PRESENCE OF A PERFECTLY CONDUCTING
HALF-PLANE SHEET

I INTRODUCTION

Among the boundary-value problems involving a perfectly conducting
half-plane sheet, the problem of diffraction of a plane polarized wave
was trcated long ago by Sommerfeld! by applying the theory of multi-valued
functions of a complex variable to the formulation of the problem. The
same problem can also be formulated and soived by using the Hopf-Wiener
integral equation technique.” ® In this report, problems invelving dipoles
and apertures as exciting sources will be discussed. By applying the
technique of dyadic Green’s functions, the electromagnetic field due to
electric and magnetic dipoles in the presence of a half-plane sheet and
the related problems involving apertures can be formulated in a compact
manner. For certain ranges of the parameters, corresponding to the far-
zone region, the complex integral that represents the formal solution can
be evaluated approximately by means of the saddle-point method of inte-
gration to yield some pertinent information regarding the radiation pattern
in the principal plane. The radiation field can, of course, be obtained
by applying the reciprocal theorem and making use of Sommerfeld’'s solution.
The method adopted here, however, seems to be more direct. As a whole, the
general formulation not only gives e better view of the relationship be-
tween various problems but also provides a foundation for further investi-

gation in subjects not covered in this work, particularly the near-zone

field.
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IT DYADIC GREEN’S FUNCTION PERTAINING TO A PERFECTLY
CONDUCTING HALF-PLANE SHEET

It is well known in electromagnetic theory that for a harmonic varying
. s . -ttt :
field with a time dependence of the f{orm ¢ , the electric and the mag-

netic vectors satisfy the following two equations:
2
VxVxE-RE = iw], (1)
2
VxVxHl-krH = Vx]J, (2)

where J. denotes the electric current density function. In dealing with
radiation from circulating currents it is convenient to introduce an
equivalent magnetic current density function J_ defined by

vV x] = ijwe]

¢

(3)

Equation (2) can then be written in a form similar to Eq. (1)

VxVUxH-kH = twe) (4)

To integrate Eqs. (1) and (4) two dyadic Green’s functions, denoted
respectively by Qe and Q_, are irtroduced. They both satisfy the equation

VxVxgG- k’g = B(x -x') 8(p -y') 8(z - 2") (s)"

where 1 denotes the unit dyadic or idem factor. The electric dyadic
Green’'s function satisfies the boundary condition that at the surface of

a perfertly conducting body

nxG6G = O (6)

.
In rsgsrd to notetione uesd in this papsr, the hold fasce type is usad for vactors; holdface

typs with s bar dasnutas s dysdie.
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while the magnetic dyadic Green’'s function is characterized by
pxVxgG = 0. (7)

Once the explicit expressions of G, end G, are knowa, the formal solution
for the electromagnetic field due to a given source in the presencec of a
perfectly conducting body can be presented in the form of certain inte-

grals. If the exciting source consists of current elements, the electric
field is given by

E = dwu [[JJ - G,dv (8)

If the source is made of apurtures on the conducting body with a given
electric field distribution, then

E - Jf (B xa') -V xg.as' (9)

apertures

For the case of ci_culating currents as exciting sources, the magnetic
field is given by

H = iwe [[[fJ, - Gadv . (10)

The corresponding electric field is

E - -[[fvx0,-6]a . (11)

Equations (8) - (11) constitute the basic formulae to be used in studying
the radiation frum current elements and apertures in the preserce of a
perfectly conducting body.

Let us now consider a perfectly conducting half-plane sheet as the
diffracting body. The half-plane is defined by y = 0 and x > 0 in the
Cartesian coordinate system (Fig. 1). The longitudinal axis of the half-
plane is parallel to the z-axis For convenience, the entire x-J plane
corresponding to Z = 0 will be designated as the principal plane The
method used here to derive the dyadic Green’s functions pertaining to this
structure follows very closely the one described by Morse and Feshbach*® in
dealing with the interior boundary value problems of a circular cylinder.

The main difference is that the spectrum of eigenvalues in the present

P o (31




problem is continuous both in the Z-coordinate and the r-coordinate, where

r is the cylindrical redial coordinate defined in the x-y plane.

Like all other cylindrical problems the elementary vector wave func-

tions that are needed to construct G are of two kinds defined as follows:
M - Vx (yz) (12)
N ey iy
= kR, Vx = kR, VXxVx (y=) (13)
where iy denotes an eigen function satisfying the scalar wave equation
2 2
Vy+ky = 0. (14)
The wave number R, is, at this point, completely arbitrary. The appropri-

ate scalar eigen functions that will satisfy the boundary conditions on a

half-plane sheet are

o (th) = ey (n.r) °°° ("—¢) (15)
s(n/23N, * & sin \ 2

with
SRR R n - 0,1,

In Eq. (15), Jn(Acr) denotes the Bessel Function of order n/2, and (r,¢,z)
3

are the circular cylindrical coordinates. The corresponding vector wave

functions are then given by

ihz
th) = (16a)
:"'/“’\c( : e .;U/zmc :
- n sin [n¢ cos [ ng :
m = |[F==J (A r) (—) r-AJ'(Ar) | (——).ﬁ (16b)
S(n/2)A 2r 3 ¢ cos \2 ©%& ¢ sin 2
ths
(th) = e m (17a)
A L (/2N
itha .
< ., cos [ n¢ - thn sin (nqb)
= J(A = i J (A o
n;u/zmc l:kc —;-( ‘r) sin(Z)r k.r -;-( ‘r) cos \ 2 ¢
2
A
t=J () °° ("—¢>z : (17h)
R, # ¢ s8in\2
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Since the derivations of G, and G_ are very similar, only the former will
be considered in detail. To express G_in terms of these vector wave
functions, one needs only the M_ and N functions hecause they are the
only functions that would satisfy the boundary condition stated by Eq. (€).
In order to solve Eq. (5), using the method of orthogonal functions, the

orthogonal property of the two sets of vector wave functions must first be
established.

Consider two arbitrary sets of eigenvalues denoted, respectively, hy
(n/2, A h) and (n'/2, AL, R'). It can easily be shown that

Jr21r N
o Bo(as/nN, ] ‘e(.‘/z)xld¢ = 0,
27
5 = S 0
J’O na(n/z))\c no(n'/g))\'cd¢ = 0 ) n \ n (18)
Jrz‘"
0 no(n/z))\c ; lc(nlfz))\lcd¢ = O .

By applying the formula of Hankel that

Lf AN, Lj rar J,(\r) J (N ) FQX) rix) (19)

[

one finds that for n = n

(] « 27 . i
Ren/2)N, " ®eta/2IN]

AAN | rar| d¢p

¢

(1+38,) m.° (20

0 0 0 nﬂ(l/z))\c - nﬂ(l,!)k:(_ih)
while

e, by rar g

0o NN, Jy rdr ), do no(n”))\c ° lc(n/z)K: = 0. (21)
In Eq. (20) n.(./z)A:('th) denotes the function no(n/z)K; with the sign of

th reversed. It may be remarked here that the normalization regarding
these vector wave functions for the case in which the n’'s are even integers
has been discussed by Stratton.® The orthogonal relationship between

.-(-IZ)KC and -e(u'/z)A;' however, was not correctly established. The two

functions are, in general, not orthogonal with respect to ¢, although they

e ——m
o —




RRCEPY PR S TOOSAT e #

are orthogonal in the en%ire domain of r, Kt, and ¢. To derive the ex-
plicit expression for G, let us first expand the right side of Eq. (5) in
terms of M.(./z)Kc(lh) and No(./2)Kt(lh) as follows:

IB(x - x') 8(y-y') 8(z-2') =

Ijktdktltdh 2;; E‘.('ih) Me(n/2)Kt<ih) + B, (-th) No(./z)xt<ihﬂ (22)

where A and B_ ere two unknown functions to be determined. The double
integration contained in Eq. (22) indicates that the eigenvalues are coxn-
tinuous both in the r and the z coordinates. Taking the scalar producc

of Eq. (22) with Me(.’/z)k:('ih,) and NJ(.I/2)KI(—lh’), respectively, and

then integrating with respect to dv over all space, one obtains

Ml(.’/z)x:(-lh') a o i i i
rdr dz deo A d\ dh -
;(u/z)h;<'ih') 0 . 0 0 ).

]

M.(.’/z)h:<'lhl)
No(n’/z)h:<'ih')

The prime functions at the left side of Eq. (23) are defined in the prime
coordinates (r', ¢', z'). The multiple integral contained in Eq. (23)
can be simplified by making use of the orthogonal relations described by

Egs. (18) - (21), and the Fourier integral theorem

[, aef, ante"** pmn = 2nrin') (24)
to obtain
2 2
M:(.:/2)K:(-ih’) = 20 (1 + 3N A/ (-th') (25)
Nt 7o (1R = 2n' (1 + 8N, B/ (-th") (26)
6
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hence,

Ix - x') 8(u-y') 8(z-2') = fo dx, J'_mdh !
2-35,
Z 2 [Mc(n/Z))\ (~th) M, (u/apn (1R)
n=0 4n Ke ) 3
+ N, oo, (th) N,(n,,,)\c(tn)_'l : (27)

To determine G, one writes

G = Lm dA, rmdh;Cn [M:(n/2))\c(-th) Mc(n/z))\c(”')

N oa Gth) NC (ih):l , (28)

where C,l is an unknown function of A, and . The unknown function can be

determined by substituting Eqs. (27) and (28) into Eq. (5) to obtain

2 - 3,
E = 2 2 2 2 (29)
4nx (h" +x_-k)

and hence,
o]

. (2 - 35,)
Q‘ . [ dx J dh 2 2 2 2
0 477 >\¢ (h + )\c - k )

-0 n=0

' [M,c(n/Z))\:(-lh) Me(n/Z))\c(th) e N;(./z))\c('”') No(a/z))\c(th)] . (30)

The integration with respect to A, can be simplified by making use of the
identity that

(1)

(" J"(Kfr’)Jn()\cr)f()\c) J%(MI)H_; ()\r) , T2 r'
7 3 %
== AL N T v (31)
R J,(Kr)Hn '), r<r’ .
0 3 s

It is assumed that A is the only pole of the integrand. The final expres-
sion of G, is therefore given by




il ™ 2-3
(B T 0
6, - o Lan \
K n=0 A
(1) (1) i
M (a2 n(-th) M ( /m(i ) + N, ( /m( By NG g nOeR) -, r' (32a)

,(3) ,(3)
M (a2 (-1R) .(./z)A(ih) + NG s - Eh) No(n/z)x(ih) , r<rt (32b)

where

The superscripts (1) and (3) are the conventional notations for the two

kinds of vector wave functions with diffcrent cylindrical functions. Thus,

M:t:/z)x(ih) o e J%(Ar) cos (%ga %] (33)
M:::/z)x( R =S Lfih' ;l)(Kr) cos (:f) %] (34)

and similarly for the N-functions.

In regard to the magnetic dyadic Green's function the deviation is

practically the same. TL. only difference is that the vector functions

M, and N, are now used to construct G_ so that the boundary condition

stated by Eq. (7) is satisfied. The final expression for &

G, is therefore
similar to that of G, except that M_ and N in G, are replaced by M, and

N, for G,. Because of the mutual relationship that

I x M = kN (35)
o(n/2)A cin/2)N
VxN = kM (36)
sn/2)A cla/2)A
it is obvious that
VXV xG, = kG, (37)
and :
VxV' xG - kG, (38)

With slight modifications the method described here can be used to derive

the dyadic Green’s functions pertaining to other cylindrical structures.

‘mpo
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IITI APPLICATION FOR THE DYADIC GREEN'S FUNCTIONS
TO RADIATION FROM DIPOLLES AND APERTURES
IN THE PRESENCE OF A HALF-PLANE SHEET

Once the expressions for G, and G, are known the discussion of the
radiation from given current clements or apertures with given field
distribution reduces to that of evaluating some complex integrals. In
general, integrals of the type contained in Eqs. (8)-(11) are difficult
to evaluate. However, for certain restricted ranges of the parameters,
corresponding to the far-zone region, most of the integrals can be
evaluated in a closed form. Depending upon the nature of the exciting

sources, the problems can most conveniently be divided into three groups:

Radiation from Electric Dipoles
Rsdiation from Magnetic Dipoles

Radiation from Slots Cut in the Half-Plane Sheet

A. RADIAT.ON FROM ELECTRIC DIPOLES
1. LonGiTupINAL ELECTRIC DiIrPoiEr

Let us first consider an electric dipole with moment p oriented
along the direction of the longitudinal axis of the half-plane sheet.

The dipole is placed at (a, ¢,, 0). The electric current density func-
tion can be written as

J, = -lep, 8(r —a) 8(0 - @,) 8(z - 0) Z . (39)

Substituting Eqs. (32a) ind (39) into Eq. (8), one finds that the longi-

tudinal component of the eiectric field is given by

3 ip, d 2 ih,z’ nq’o) n<p> (1)
E, - o= J Ae , 8in 3 s1n SEl J;ﬂka) H, (Ar) dh . (40)

n-1 2

For large values of PR, where R, &, and @ are the spherical coordinates

of the point of observation, the complex integral continued in Eq. (40)




can be evaluated approximately by means of the saddle-point method of
integration, with the result

n

ST - <w) /ne
L, — = sin & £y (-1)" sin == sin \?>J%(ka sin &) . (41)
Because of the reciprocal relationship between the properties of trans-
mitting and receiving antennas it can be inferred from Sommerfeld's
diffraction theory that one should be able tc transform the series 1in

Eq. (41) into certain Fresnel integrals which represent the original form
of Sommerfeld’s solution. The transformation can be done either by
applying an expansion theorem due to Hargreaves6 in connection with the
half-order Bessel functions or by using an alternative method described

1 .
by Morse and Feshbach . It has been shown by these authors that if one
writes

2

1 ‘ ne
S(p,@) = ; (2 - 8,) cos (—;) J-;_(p) (42)

the integral representation of the series is given by

- o (VTP cosld)
S, ¢) - (mT e"‘(p°°'¢+4) J g !t ds (43)

-

The integral contained in Eq. (43) can be transformed into the standard

Fresnel integrals defined as follows:

) [' cor t g it
Cix) = ——dt . S(x) = 3 dt . (44)
Jo (2nt) o (2mt)
8,9
Adequate tabulations are available for these two functions . For

numerical computation the following formula for S(0,9) is therefore more

desirable

» _l a8 TOO n .
S(p, @) 2T " P d"‘){%(1 s 1) £ [Clx) + iS(X)]} ,

(45)
x = hkall + cos @)

10




where the sign is fixed according to the range of ¢

s O g

. m ‘; q { 2”

Regarding S(0,9) as an “elementary’ function, one can reduce Eg. (41)
into the following form

2 ikR
w yp'e

E, - Ts‘mz(j (S(kasint, o-¢, ) - S(kasiné, q)+(p0)] . (46)

In the principal plane, corresponding to ¢ = 90°, the radiation pattern of
the Z-component of the electric field due to a longitudinal ‘electric dipole

in the presence of the half-plane sheet is therefore simply given by

F(E)) = S(ka, ¢ - ¢)) ~ S(ka, ¢ + @) . (47)

It is, of course, possible to obtain the same information regarding the
radiation patterr from Sommerfeld’'s solution by applying the reciprocal
theorem. Equation (47) also contains the essential result obtained by
Harrington,lo concerning the radiation pattern of a line source in the
presence of a half-plane sheet. In fact the complex integral obtained

by Harringteon based upon the solution of the Hopf-Wiener integral equation

can readily be reduced into Fresnel integrals.

For other orientations of the dipole, the derivation of the essential
formulae concerning the radiation pattern in the principal plane is

practically the same. The final results are summarized below.

2. HomrizonTaL ELecthRICc Dipore (IN THE DIRECTION OF X-AXIS)

F(E,) = sino [S(ka, ¢ - @) - S(ka, ¢ + )]

) (i* Jileed) (o) z‘)
7ha e T 2

(48)

11




3. VEeERTicAL ELecTrRIC D:poLtE (IN THE DIRECTION OF Y-AXIS)

F(Ey) = cos ¢ [S(ka, ¢ - ¢;) * S(ka, ¢ + @))]
(49)
A ( 2 )é ei(ha+%) = ¢o> L
nka "\ ®, e,
The patterns based upon Eqs. (47), (48), and (49), after being
properly normalized, are plotted in Figs. 2, 3, and 4 for several
different values of Ra and ¢, .
. B. RADIATION FROM MAGNETIC DIPOLES
1. LoNGiTupiNaL MAGNETIC DipoLt (IN THE DIRECTION OF z-AXIs)
F(E,) = S(ka, @ - @) + S(ka, ¢ + ¢) (50)
2. HomrizoNTaL MAaGNETIC DipoLE (IN THE DIRECTION OF Xx-AXxIs)
l .
F(E) = sino [S(ka, ¢ - ¢,) * Stka, @ + @)
(51)

(2‘é il hatZ) <%> <¢>
. + ) e 4 cos|{—] s1n {—
nka 2 2

. 3. VERTICAL MaGNETIC DIipoLe (IN THE DIRECTION OF Y-AXIS)

F(E,) = cos ¢ [S(ka, -~ @) ~ S(ka, ® + @)]

2 \¢ il katd) (f&) (31> .
(nka) e sin > sin 5 . (52)

As shown in the following section, when a longitudinal magnetic

dipole or a horizontal magnetic dipole is placed at the half-plane sheet,
the pattern is the same as that of a small longitudinal slot or a small

horizontal slot cut in the sheet.

12




C. RADIATION FROM APERTURES

The electromagnetic field due to apertures with given electric field
distribution can be evaluated by applying Eq. (9). The aperture can be

4

excited either ‘‘one-sided’” or “two-sided.’” In practice, the one-sided
excitation corresponds to the aperture radiation from a waveguide ter-
minated by a half-plane sheet. If the opening on the sheet is ted by a
two-wire transmission line or a coaxial transmission line the excitation
would be two-sided. Much useful information regarding the radiation field

due to apertures can be gathered by considering the radiation from narrow

slots.
1. LONGITUDINAL SLOT

The field distribution for a narrow longitudinal slot can be written

as

E = f(z) 8(r-a)7F ) (53)

where f(2) is a given function of Z depending upon the assumed field
distribution along the slot. For a one-sided excitation the far-zone
field in the principal plane, obtained by substituting Eqs. (32a) and
(53) into Eq. (9) and applying the saddle-point method of integration, is

Fi(B,) = S(ka, @) (54)

The pattern is the same as that of a longitudinal magneti. dipole when
the latter is placed at the surface of the hal f-plane sheet corresponding
to @, = 0 and at a distance I = a from the edge. The corresponding formula

for a two-sided excitation 1is

F,(E,) = S(ka, ¢) - S(ka, 21 - @)

+ (2)é e-l‘( iocondﬂ"r)

[C(x) + iS(x)] ,
X = ka(l + cos ¢) . (55)

2. HomizonTAL SLoT

The radiation field due to a horizontal slot is somewhat more diffi-
cult to evaluate. Assuming that the field distribution in the slot is
of the form

13




E = f(r) 8(z-0)% , (56)

where f(r) is a given function of r, then the far-zone field in the

principal plane due to a one-sided slot is, in general, given by

ikR ' '
n n f(r' )Jn(br)
E = : E n(—i)Te;ln(—(p) z dr' . (57)
. 4nR 2 r'

n:l
slot

The integral contained in Eq. (57) cannot be evaluated in closed form
unless the function f(r') is a delta function so that the analysis applies
to the problem of a very short slot or one of another class of functions
discussed in a later section. As present, let us consider the special
case of a short slot. RBeplacing f(r’') in Eq. (57) by &(r'-a), where a

is the radial distance measured from the edge of the half-plane sheet

to the small opening, one obtains

kR

e a [ne
B = A (e v
: anah Z B8l (2 sm(z)

n=1

i kR

o L S(k ) (58)
4maR  dp ek '

The radiation pattern of a one-sided small horizontal slot in the
principal plane is therefore given by

F (E ) : 2 S(ka, @)

N T - Reg

il kat])

. sin g S(ka, @) + 2) : (59)

T sin(}
(2/7)%?0)’L 2

The pattern is, of course, the same as that of a horizontal magnetic
dipole placed at the surface of the sheet obtained by putting ¢, = 0 in
Eq. (51). The'corresponding formula for a two-sided small horizontal

slot is

14




-ihkacosd

F,(E)) |sin ¢| e

(C(x) + i S(x)]

x=hka(ltcoad)

+
'\ l"“‘
I ®
B -
Q -
~ a
o

1]

—

=3

I
~—

> (60)

Patterns based upon Eqs. (54), (55), and (60) are plotted in Figs. 5-8
for severai different values of ka.
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IV LOCATIONS OF THE MAXIMA AND MINIMA
OF THE RADIATION PATTERN FOR SOURCES
FAR AWAY FROM THE EDGE

Since extensive tables of the Fresnel Integrais are available, 1t
is possible to compute the radiztion patterns corresponding to various
excitations for practically any value of Pa. If the value cf ka is large,
the pattern exhibits certain distinct properties. A typical pattern for
a one-sided longitudinal slot placed a distance corresponding to ka = 30
from the edge of the sheet is shown in Fig. 9. The locations of the
maxima and the minima of such a pattern can be ascertained in a relatively
simple marnner. In the case of a one-sided longitudinal slot, the extreme

values of the pattern are determined by the condition

3iS(ka, ¢)|

o . 61
> (61)

Using the explicit expression of S(ka, ¢) given by Eq. (45), one obtains

1
5 + C(X)
= - tan x (62)
LS
2
where
x = ka(l + cos @)

The graphical solution for the roots of Eq. (62) is shown in Fig. 10.
Denoting these roots by X _, one can see from Fig. 10 that the approximate

solutions for the roots are given by

=
n

(4m-1>% ,

or

T
cos Chp s == Sl s il 000 . 63
@, ( Yo _ (63)

16




Equation (63) determines the locations of the maxima when m's are odd
integers. Interlaced between the maxima are the minima corresponding
to even integers of M. Since the magnitude of S(ka, ¢l) and that of
S(ka, n) are independent of Pa, their ratio

S (ka, ¢,) o=
T B (64)

is therefore also independent of Ra. It is a measure of the rapidity of
the decay of the field from the peak value to the value observed at the
boundary between the shadow region and the illuminated region. Similar
discussions can be carried out for the fields set up by the other t-pes

of antennas considered above.

17
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V RADIATION RESISTANCE OF ANTENNAS NEAR HALF -PLANE SHEETS,
AND RADIATION CONDUCTANCE OF THE COMPLEMENTARY SLOTS

ln this section we will discuss the radiation resistance of a
quarter -wave monopole attached to the edge of a half plane sheet, and
that of a half-wave dipole placed in front of the sheet with its axis
paraliel tc the edge of the sheet as shown in Fig. 11 (a) and (b). The
complementary problems of a quarter-wave slot normal to the edge of the
sheet, and a half-wave slot cut in the sheet parallel to the edge, are
shown in Fig. 11 (c¢) and (d). Since the Babinet Booker relationship
regarding the radiation resistance of the dipole and the radiation con-

ductance cf the complementary slot applies, namely

2

-
Sy ='—z- (65)

where n = 1207 ohms,

it is therefore sufficient for our purpose to present only the detailed

analysis for the cases involving the monopole and the di,ole.

A. QUARTER-WAVE MONOPOLE ATTACHED TO THE EDGE OF A
HALF-PLANE SHEET

To evaluate the radiation resistance of the monopole for this case,
the method of Poynting-energy theorem will be applied. For a base-driven
monopole it will be assumed that the current distribution is sinusoidal
The current density function to be used in Eq. (8) can therefore be

written in the form

J, = I, cosPr HE SO SipTr) T . (66)

e
r

Using the expression of G given by Eq. (32a), and applying the method
of saddle-point integration, one can obtain the explicit expression for

the far-zone electric field. Expressed in spherical coordinates, it is

18




nIeth g
0 ; o) ne
E ... T i <_.>
0 o7 ...(i) sin|{—~) cos 6 K (6)

5+

o L jg:z
0 DR np\ 1 n
5, e P (D (3)
¢ 2nR s 3,,,(1) o8 g (o) g 9!
where
o
kK (6) = k J‘ J! (pr sin ¢) cos kr dr
E 0 T
A dr
I (6) -= J‘ J,_ (kr sin 6) cos kr —
T o T r

The functions K (&) and I (&) defined in Eqs. (68) and {69) can be

2 T

evaluated in terms of the Fresnel integrals.

Appendix for n = 1 and 3.

(67)

(G7a)

(67b)

(68)

(69)

They are tabulated in the

Using Eqs. (67a) and (67b), one finds that

the radiation resistance of the quarter-wave monopole defined with respect

to the base current I; is given by

2 (27 (z
R, = — J J’ (Bx + Ey) R sin 6 d&de
1y Y 0

2 (z id
: (Bt
nol 3 sin 6

"
N
|
—
n

0

Kt(e) cosze sin 6 d6 |(70)

&

The integrals contained in Eq. (70) can only be evaluated numerically.

t a S 1
in gr n 3

19

2
ard £, (6) cos'6 sin 6 are plotted in
z




Fig. 12 for n = 1 and 3. The contributions to R_ by terms with n - §
and higher are negligible. The sum of the four leading terms gives a
value of R_ equal to 86.3 ohms. It i1s interesting to observe that the
value is greater than the free space radiation resistance of a half -wave
dipole, namely 73 13 ohms. For a quarter wave monopole driven against

a ground plane, the radiation resistance i1s, of course, only 36.56 ohms.
The input impedance of a monopole driven against a large, but finite,
half-plane sheet has been measured experimentally The result is plotted
in Fig. 13. The antenna is a quarter-wavelength long at a frequency of
700 Mc. The input resistance of the antenna at this frequency is around
92 ohms. It confirms the calculated value of R_ within the experimental

error.

B. HALF-WAVE DIPOLE PLACED PARALLEL TO THE EDGE OF A
HALF-PLANE SHEET

As in the previous case, it is assumed that the current distribution

on the dipole is sinusoidal. The current density function to be used in

Eq. (8) 1is

8(r - d) 8(@ = n) A
z

J, = I, cos kz = (11)
The far-zone field in this case has only one component, i.e.. Fy.
Following the same procedure as before, one obtains
i kR .
-nlye COS(E cos 6) ; -
E, - 1) J_ (kd sin ) si (“).
6 R sin 6 HT\:’, 1 ( ) i'- ( s ) n 2 B

The radiation resistance of the dipole can be evaluated according to the

following formula

2 LN PR
R‘ _— E, R sin ¢ dede

~

csz(ncse>
2 cos [— co

2
_—_J

2 ¥ (kd sin 6) d6 . (73)
sin 6

1
DN
2 {8
s
"
w
=) Fen
L E]
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The integrals contained in Eq. (73) may be evaluated numerically with
the ail of an adequate table of half-order Bessel functions. The result
is plotted in Fig. 14. For comparison, the radiation resistance of a
horizontal half-wave dipole placed above a grourd plane 1s also plotted
in the same figure. The two curves are seen to intersect at those points
when d is a multiple of a quarter wavelength. It is believed that the
identity of the two equations for radiation resistance could De demonstrated at these
points without difficulty, but such a demonstration has not been carried out. Physically,
however, it is difficult to explain why the two configurations yield the same radiation
resistance, since the field distribution of the two structures are entirely different.
Qur discussion on the radiation resistance of a Lkalf-wave dipole in

11
the presence of a half-plane sheet supplements the earlier work by Kraus

on the radiation resistance of a dipole placed in a corner reflector. A
half-plane sheet is structurally a limiting case of corner reflector when
the angle of the reflector approaches 360 deg. Using the dyadic Green’s
function pertaining to a perfectly conducting wedge, one can, indeed, treat
the same types of problems as have been discussed here for a half-plane

sheet.

As a conclusion of this report we shall consider the problem of the
radiation resistance of a half-wave dipole placed in front of a perfectly
conducting wedge when the distance between the dipole and the edge of the
wedge is small compared to a wavelength. [y an analysis similar to that
leading to Eq. (73), the general formula for the radiation resistance of

the diﬁole in this case may be shown to be

m
7 cosz(-2— cos 8)

4 2
.- 0 E =m——— . {hdisin ) b (14)
2m-9, o Daghenis sin & "
where
@y = angle of the wedge
s BE , =1, 3 -«
n 2nﬂpo

Because of the lack of adequate tables of Bessel Functions c¢” arbitrary

fractional order, the integrals in Eq. (74) cannot easily be evaluated.
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In the case

(h)? My +2)
e R <
\2/ r(/.Ll + 1)

the significant part in Eq. (74) is contributed by the leading term of
J“l(kd sin 6), which is given by

I

o s B (lkd sin a)“l (15)
ey N3 ’

J, (bd sin 6) =
i

The radiation resistance of the dipole under this condition can be

computed from the fcllowing formula:

R, = a(m)™ (76)

where

480y, [%

a =

J cosz<% cos 6) (sin ef'ﬁ-ldﬁ
22“11...2 (}Ll - 1) 0

The index 2u, and the constant a are plotted in Fig. 15, as a function
of the wedge angle ¢,. When 27 - @, =iiwith m=1, 2, ... the wedge
becomes a regular corner reflector such that the method of images can be
applied to determine the radiation field, and hence the radiation

resistance, of the dipole as discussed by Kraus.
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K (o)

K, (6)

I,(6)

APPENG IX

THE FUNCTIONS K (6) AND I (¢)
2z T

1 1 = 1 + sin 6 ol
0.)
(s1in 6)’b (1 + sin @)é T sin 6 i
— __1+(l-s1nb C(p)
(1 + sin 6)2 sin &

m
-4 sin (— sin (7)
2

\_/

1

) 2
(sin o) 7 osin’ e

—

-+
i

-{2(1 + sin 6)2 Cp,) - 2(1 - sin 6)® C(p_)} :
(sin ¢‘7)é
8 sin <—”— sin 6)
1 = +2(1+sin )% |17
(s1n b)é 37 sin & L

+ 2(1 - s1n (‘j)é E+—§- (-l-;Trs]l:—b)]S(p_)} .

25

sin

)

1 b, l + sin ¢ 1l + sin &
4 — |1 -3 |——) + o[ —
(1 +swn6) L sin ¢ sin ¢

! 1 - sin 6 (1 - sin 6
=t 3 = 2
(1 - sin 6)’5 sin & \ 31n &

S{e_)

l1+siné6

= ﬂs(m)




where S(0) and C (o) are the Fresnel sine- and cosine-integrals.

arguments o, and p_ are defined as follows:

m
p+= -E(li-sln@)

m
s = - gin &
P 5 (1 - sin 6)

26

- T

The




HALF-PLANE SHEET

FI1G. |
HALF-PLANE SHEET

A-391-TR4S -487

27

S —————_




4 ‘r‘r 7
Wiy
i
”W!I'_rm;';"“*
i
i
||||,l.l|'.l|utmu A
T
A
W

Uiy
7
e
i g
iy

1

I\
“\nu:::““:‘.“
1L e
A \\\\:{\

- IH I“Ilauu i
'Ill'.'n'l\l-::‘l‘l‘ill‘l“i‘:‘-::‘:
TR
TR
\\\’\\\\‘\\\\\\\\“‘\:\\“‘:\‘:\‘"}.\f 8
TR
R
N\

.

[/
7
i,

[l

il
i

N
i
im

W\
Wl

"'\\\\‘\\\~.
o N T
S
\\\\\\“ \\&\“\ \

i

s

S
& )
S

i)
gy

iy

gy

o P L]

; &g&’f"m‘fffr;’fffpjgrf

o

A
s

Ry

sl
sl
{ 7

ff#; i
iyl
w,

G, 5°, kar 4

FIG. 2A

RADIATION PATTERN OF A LONGITUDINAL DIPOLE

PLACED IN SRONT OF A HALF~PLANE SHEET
D-591-TRAS- 488

28

-




AN
e m'l.'.\\‘““
A

L

A

1\

LA
AR s

\\“\\\\\\\“\\~\‘\‘o“a

Qs
S

=

e
g,

o
& o
ff;‘,, f;,,)l.',,"/
Ut
i’};,;:"’n"‘ ",
iy,

i
iy

%
(%
y ,;f,/;:;// %,
;f%ff!fy
',‘Wffif,r;:
I’."!!:;,ﬂ#

1/

-

ittty
#!Jf;;gﬂ

i
1)
;;";lr
!
Uty
",

T
]
7
#.r‘

'
&/
4,
7
Gl

iy,
ey

R %
& S s %
RN Mgy,
S Wity s, e W \
R A NIRRT
% T gy, ; AL
it [ A
““\\“ " Hiny, "',l.\,\:.ml\!l\
i - i)
(HVTVA I uninmn i ; "”J'H:ﬂllilll“ﬂ”]l
Wi LT Ui ! i '_‘uwmw_.ff?‘-'i.rml
Ui \ BN “;uu_.u,,m iy

U
TS
) i ¥
TR

W

ey
Zr
Vg
u,,:
S
i
5

!

<

"
.~: i)
Wi

il
i}

iy
i

"I?‘.I';f”’}”"l’ﬂ
-'5"1;::::.-;,:"!
[
g

i
i,

T

i
i,
i

il
1l

e S
e

iG]}
R

o iigg M
-,,;e,,;;::::_{_{‘*-‘f#r::;""f-'!!ﬂ
ST Tk fn".!‘j}m
"’&”W;"“’ﬁr i y

%

iy {/’f’
L
isg!

W
>
A
"

¢,210% ka= 4m

FIG. 2B
RADIATION PATTERN OF A LONGITUODINAL DOIPOLE

"PLACED IN FRONT OF A HALF-~PLANE SHEET
0-591- TR45-489

29

p—— e




S
ot
\\\‘\
A

%

%

%
f g

[T
ml!uumm-'n'x‘?-"..
\l\'\l\\\'\ﬁ\\tm A
\ W T

:\\\
\\\\V\
)

%
/f"’f
e

SN
R
\\\\\ \\\\\\

o
o

S
e

i
3

&
i
G
7o
.

o,

ff;
f')‘a‘,'f}ﬁ'#f;ﬁagj 5%
i sl
":"J:I Wit
LT
‘}'}':"ﬂ%“e\“\\l\n::\\\\‘\‘\
\uﬁ\\\\\\\\&\\“\“\“ \
T o

v
R

i
et
St
=

“:“\ \\\\\\\\\‘\

R
‘::_‘\‘\\\\\\\\\\\\\\ N

"
.-mr::”:ﬂrlm“m i

i m.-,li:mum”m

iy Uigy "
L D] i
i

il

0,0 15% kor 1t

0y
X i, %
’?‘?}fog@f,,’
T
- ’3’!"}’#".‘9
R

Y

e

"::::m\

l\\“

(i
(I

i

e AR
\\\:““.::

o
e
o
o
R

\'\\\\

3
\\\\ -
e I
QA £

-\\\‘&-*é‘..

\\\\\\\\
g
e

T

A e
R
0
-

VL i
s
A\

W

L
A\

=

FIG. 2C

RADIAT
ION P
ACED N FRONT 3§ A LONGITUDINA
S h Tl aaE
CIRE e

0-89:-TR48-490

30

L
aoteg)
"y
iy ey
“,
i




Sty
it
N R

e ‘:\Nﬁh\ U
e \\\\\\“

W \\‘I‘I!Il\ iy
i

R i
I

(I
T

1|
R
A R ot gy
R i g%:fwﬁ
A e
R W S i
N\ 7 R R A iy
R e Xk 77
4 N I
RS oS
=== === =
NS == 4
SEEEE =EEE==
NGE =N

)
!_,///////////..
A

o
%%,
o
%7
oy

Wil
Uiy
iyt
[
AR
o AN W
il
VY .|ll.'|-|"'“l"lll'lnlll
e
ummm.ll,#fl
i
?ﬁf‘%@#&?
Wt 0],

oo. 45.0 kae
1

e \
RSN
i

o,

'I,f'/

’-’/‘ 7
N

Oo' 45.‘ ka=4p

FIG. 2D

RADIATION PA
TTERN O
PLACED IN FR F A LONGITU
ONT OF A HA DINAL DIPOLE
EET
D-891-TRaS-49|

31

&
3 . "
T ——

et s camny




I
oy
um”‘"mm .
W
N

L g gy gy )
e ":?”’zﬁ#’ﬁwﬁff;;
TR o f;,,/, ff;@
RS % ",
Gl W
AL
24

T
S

o
T
s )
A
S
th

/) iy
iy S
Wiggpp it i

I
iyt
LT
] 1l

/ iy
A
"'"r-l'ﬂl.(,’:’

Nl!lllmmu
gy
T
..,;«.,;;;w.fﬁg;wm,:g

\y o Y
TR e LWL
W LA

W\ o %
e %
i \\\e* o,

$,0135% ke= 4n

FIG. 2E

o
RN
A
SRR
~\\§}:\_\.\\\§\\\\\.
AN A
A
SRR
“:\“"“"}&['..u\'-\

W
‘umn\l' n“mm

"
g
LT
e Wy
e

G
R
Iy

RADIATION PATTERN OF A LONGITUDINAL DIPOLE
PLACED IN FRONT OF A HALF-PLANE SHEET

32

- e

D-891-TRAS-492

—— T — o ——




o 180° ko= &

ff.l'."ﬂ'ffﬂ
J'H'-I'.n';,q_,lfw

H

Yty
i
i

“

(i

1

i
Ay

Ty,
itiygy i
‘ "””fu,.
2 V’""tqg
&
Lt
o

7/
i

F‘. e
:.\-‘ .\\\:.\\:“.
S W
e
)

%,
o,

s
°® ka
1807,

L X

F
FIG. 2

E
oL
DIP 2
5 HEE
OIN g
ITU s
W PL
v 3 Il--ioALF-
o %F A
y T
PAT b
ION g
IAT 2l
RAD it
PL

-493
91-TR4S

-8

0

33

.

1) "'Ww
x,%

ooy 2

=0 """.ut. [

b,

i

f.r.ff,f;,”

[
"y,
kfff;@,m{
!

mnmmm
i

J@




|l|.|.ﬂl'-|“|llll.l‘ll|‘m
\}

A
MW

gy
=

S§&d
SIS
£

el

IR i e
T

|.'|_'|11'|'l'l“"“:...n 0

i
ey
o o

o
S
o
i

&

e

e

S
et
o

&
>3

1
T
)

RADIATION PATTERN OF A H
PLACED IN FRONT OF A HALF - PLANE

e
T i
9 iig il e
iy -‘!-‘J""""l-‘ﬂ S

i il 1\ AR
gl AR
gyl RO

W R

" Wity

o oy g

Sk ,5%5?
S
U

T v
I \mv:\\“\“‘:‘\u\‘:":‘.‘& Y
Iy
R
HRHITRRR
R
e

R
R
S

o

%
fI/”flf/l
gl

%
7

4y
.-';,.-_.r;':‘

i
o

\\\\
TR
N

v
5

!
s
RS

%

o

é;d? %

7
iy

i o

i)

o
%
iy

s
s,
7

i,
77
i

L
t\\\\\\
N
Ay
iy
i

)
{1
111Hfy

i
7

N

T
N
4/

T
*.\\\\\~
|
.
i

A
W

@"5° ka=4 W

FIG. 3A

34

ORIZONTAL DIPOLE

SHEET
D-891-TR4S- 494

\ 1
AR
AN
I
s
”“Ir:’l‘lll::u”””l””“”

»’:.u.-,,,‘,f,f,ﬁ{;?ﬂﬂﬁ;m

i
f,ﬁr;ﬂ'l

w H
i Hﬂ;.'.‘ il

i
Hh‘u,f
i
If{'f‘f" v,

il
o
ity

i‘;”
ety fag g )
etegs ey iy,
2 ‘l.-,,:!a,, ;;"ﬁ"
piitpn,

'ﬂr

iy 17

i

gttty i

i, gy

A
Uy )
i

5
&

e
3

A

)
~

P,
Bty I,
e gyt
%
5
0
%

ALY
\\\‘:::\\‘:
R

s

"
e
S

0
////

II}//////
/.
7

T

.f’

(14
L
N
W
\\\\
o
oy
N\

1}
R
TR
W \\\\\\i\\ 3
R
B

R

LA
T

>




% %
0,

Wi
“

’// &

Ty
s
s
f"'?ﬂ#;‘;?fm;, o
!’f.f,t‘f”ﬂ ff#fﬂfﬂr;:' o
fﬂ.fr!.rm,’:"""-’-‘mf’,"'f
Mg
T[T aprba

e

I\

Ty
‘{{::3““33
Ay
TR

PR
2R R
% LANNR

AH
) &

R v—
- -
|

)
SRR
I R
1)
)

e
p
Sl ,\\\\:\“\\\\

i
AR
‘}:ﬁn\n
! 11
A

TR

o
i\\\'l““"“‘::\\“"' eyl i
AT,

LS
IR 7
\\\\\\\‘::\\,\\\\\\:\\‘\_"‘\‘\ gl
\\\\\\ \\\\\\\I\\\\\ o
W %

FIG. 3B

RA
DIATION PATTERN OF A HORIZONTAL DIPOLE

PLACED IN FRONT OF A HALF-PLANE SHEET
D-591-TR4S- 498

35

L)
!
Wt

]
o gl
% ’/_(?;f/}; iy




o
W
\‘\\\\\\\ \\\\

i AN
-‘\-“.\\\ﬁ\\\\\‘,‘\“\\\\\\

“"n‘“\‘::q\'a\\“‘m“

Ay

i
(TR i)
TR i
iy AT : Uny ,:rfr-'um;n;';m e AR /.
A : ipgga T e el
L) ety My W AN sty gy iy
i s g’"’#g’mfffﬁ::ﬂ \\:\\\‘“‘:\\“ﬁ‘-‘\y‘i .*;4,;;?;,:;‘; i
vt e g PR sl
gy g R L
X R 2 )
@///,;/[/ / N\

)
0%
Y
TR f’j%';ﬁ,” %
W \\\\\\\\\\\\\ ;;;g"’##ﬁ%{, 7
o A gy e
Hin, : Q:\::\\\\\::::\'-\ T ﬂf.'.!mm -'.t,-.mm:::«"'
u : A
it : : |
IR
I Hitggy AT
L : Ul . ““.::\::.
(e
W

SN Y
R N
A
:\‘\\\\:'_\\\\\\\\\
.

\\\\‘
X Et et
Vit ey, RIS
Witgy ey, "o a
by
Higgyy,,
i

T
R
ey
AR
TR

]
doo15°%, kasam

FIG. 3C

RADIATION PATTERN OF A HORIZONTAL DIPOLE

PLACED IN FRONT OF A HALF-PLANE SHEET
D-89!-TR45-496

36




[T
ﬂ.‘if.'ﬂru';':':ffﬂ"’:
Mgy s

I

i
i
e g
L )
by ey

o "',)’ff *}

RN
R
i

‘\\\\\\'“ s \“\“
S
st
i

il
““mu.“
T
TR
N
\\\\r o
R

i
3 "“\\\\:\“\:\‘
A
e T e
N

®o=45°%,ka=4TT

FIG. 3D

ML

i
e

2o,
o Rt
» g )
5

Uy

e,
Uy

RADIATION PATTERN OF A HORIZONTAL DIPOLE
PLACED IN FRONT OF A HALF-PLANE SHEET

37

e TSI

D-591-TR43- 497

t 3

W, Pl




—
——
=

& N
@‘mﬂ
“ﬁmww
\\\\\\\\\\QN\
i

P
\I\\\
X

A i
wmva
\\\\\\\\\\
\\\t\
4 it
o, I
il
|

L
\\\\\\\\\ A
W \\\\\\ &

e
wm
.
i,
i, /
,

.

N
]
ﬁ?

iy

B
o
m

s
\\\\\\\\\\\\\
\\\\\\\\\\ h

!
ity
g

Z

g

Sl

iy
gt

L
W

P
‘::\\\\\\‘:\\\\
o m\\\\\
i
l”:

“"\\’}\t\‘::\

W u
\\“\\‘\“““““\\:\l:\‘\\m..
\\\\\\\\\\m\\\\\\‘\\\‘\\\\::::::r
N \‘l*\\\@“\““ o

o
o

i
I
T
TR
vy

“‘: sy
A “\\\\‘“\“‘““e:
N \\\\\\\\\\\‘\_
‘\\\\\\\ \\\\\\0\.
\\\\\\\. "

on-|35.
kae4T

-

RAD
AT
ION
OF A H
OR
1ZON
TAL
OLE

PLA
CED
IN
FRO
NT

o & @
ALF
- PLA
NE
SHE
ET

D-
ST s
o

38




&

i,

£

Tl
ity
oy,

LT

IR

<7
ff%
7

1)
I-'Imﬁ"'

iy

&
!
r,;:;?ff;
:mﬁ";f“
il

N E

et v
.u%?%.w.%s..ﬁm..:_... -
i W' P9
5
1y, @
il -

o,
g =
s 1),
ko
-
o
L 4
o
o
2
‘o
iy e
A
),
iy~

3F

FIG.
RADIATION PATTERN OF A HORIZONTAL DIPOLE

IN FRONT OF A HALF-PLANE SHEET

PLACED

C~591-TR45-499

(=)
o

-

——r

NS

L=




il
ihi

W g

W \\\\‘“ﬂ\:“‘\“‘g;:
ety
\\\V‘g\\\\\r
2R
S

oo
N
8

.I'.'-I'n‘ﬂ-‘ffiw
"-lzf “ ﬂﬁ(;ﬁ#
.
Wy,

i,

iy iy
Pl

A

%,
%,

(7
7 6‘;%,4’4% :
’a’/m ""':”"
‘i%f:?r 42 7%
ffﬂn‘fgﬂﬂ’o‘"'u

iy, o
brytter
q.f.r.rrmm e
Wiy, z

" ‘:,fm,'
S
s
5

iy,

g
J
v ::J'm{

wmm
gg:;fﬂ#ffff}:fi
;’:;g’,;;;f.m/ f?ff#{@
!
\\\\\\\\\\\\\ N
N
R

R
A o S
\\\:\\\\\\.\\\‘\:

iy
y Wp s ‘
7 ;fq:,:,:’-"’*'::':":
gy By 4
Wtpy,

",
Pty te
Higyy !

: m.*.fﬂ.‘.'-’."
"::mmuw.fwﬂf:ﬂ!
{_.:"_‘m;;.«?fyfffm}}
i &
7% Wffﬁf%;
A

5

=4m
oo .O.'ko

LE

o1PO

o M e
A

OF

RN

ATTE
N P

ATIO
RADI

ANE SH EE&I-Y"‘st
L i
F-p
BP™ & e
FRON
IN
ED
PLAC

40

RIS mem LB




Q
S
A

St
kR iy

S iy i
Il
[l

i
i,
g A
g g ]
Z .a.:-_‘rf.r;,;;‘r:f#,r,-‘,,;,
'
&4‘//(./;5

0
o o
A

o

s

W
e
N

i

A
\\\‘-\\ A

it
v

e

Ty

1
¢ =5% kovam

FIG. 48

RADIATION PATTERN OF A VERTICAL DIPOLE

PLACED IN FRONT OF A HALF-PLANE SHEET
D-881-TR48-50I

41

w— = —Tr— e -

"

Ko S A




gy
e
it

g

/s
ifgys
[Tt

o

iy

2‘” h

i,

iy

(f
i

fffffﬁ |

(i ﬂ.‘;
ity
i1t

i
i

A
i
)
7 //

=
=
=

=

i,
W

U
“

Mg
\\\\(&\
-
J
i
/
74

i
i)

W

—
=
=
=
=

1|
iy
[/
Y

)

iy

A
2
e
i

e

i

e
/]
[
g
&

N
if
iy
4
i

S
S8
AN

",
/7

iy

2
S
0
R
ST
i,
1

Ef
o
S-‘\ R

£33
iy

R

A
i

i,
Uiy g

{‘\'
N
kel

o
]

2

W
W \\\\\\\.\'
.\\\\\\' 5

R
AN
&
\\‘\\\
SR

S

\\\\
&
\.\\\Q{\
25
S
s
A

o

i)
il
S

W,

i
)
1%‘3’!}
oo
g
7

iy,
il
7
o
4%
= @// f
5
%

o

iy
i

g ity

i
4
oy i
7
oy
%
%
%
%

Gy
i
S
) \
i
i,

b

T
I i.'.l'.\m‘t:m‘-.l‘:-:l:&.‘.ﬁ
\\.‘l\“\\\\“ I
TR i
TR iyl
ik il
R i
RN -
N 2 . ,f‘//sz

Hy, 'y, It h
AT
gl 7 ;if;rgf 0
)

)
N
W\
o
S \\\\\:\\\\\\\
) \\\\\&\\\\\\\\\\\\\
s

§,=10° ka=4Tm

FIG. 4C
RADIATION PATTERN OF A VERTICAL DIPOLE

IN FRONT OF A HALF-PLANE SHEET

D-591-TR4S-502

42

B

i

R RIS S i st ST




o
o
o S
yi!

s

W

o

i

L
e

o

A0
SIS
S
F i
o
e
o
m\m\\\

S
-\‘\‘&\:‘
o
o
i

\\\\\\\\\\ A\
\\\\\\\\\\:\\ N\
\ ‘\\'\'\\
o~y oy
e ':,‘_', 1
o Ifff’!’#?fj’#r}f
i i,

S

*‘t\\\\\\\\\‘
"\a\\\‘ﬁ ? 2
S

\\\\\\\ ey
\\\\\\\\m\::.
\\“\‘“‘:{,.»
: W &
o R

W

[ - -
-r‘-\r % g
Wil (A

N
5
fr;:':r::;,;

oo

F
%y

iy

7

T i
\\\\\\\\\m\m\u...
i “.““\{‘\::::““..
\\\\\\\\ g
\\\\\\‘\““‘; :
R o
N R

o ,’::"r,
o h,!;}
*”f’.p?ajr
S 7

5

o

-

FIG' 5

RAD

IATI
ON
PAT
TER
N
OF
A
ONE-SIDE
D
LON
uDI
NAL
SLO
o- T

0 TGS 958

s

43

ST—




813
)
ol

ity
iy

6%
550
‘!&*b‘g%?ﬁ

ot
GRS
f;&;’lf,&:‘bo:’q
”""rz','::hj,‘
i

.
ity

\
A
o :;\\‘\:“\i.\\\\\
SR
o

il

A
\\“\\\\
n\‘:::"““

yattiy
Woan
7 g 0y, .{
" f’ggﬂ’;g”wffffj
o0 iyl
Y ,//2%/!

% !
- e -
3 %% i
SN I

Ssssaae e
== %"-?@-&.&\\@ 3 //4',4‘///,/_'4,”%

SRR . e

R s 5

FEee S T

E, S

2 A

,
S
220 o
%

=

W iy,
A ,{‘I"'Jj mmi'm
ey ot g
3 'ﬁ“.“,\: A 4
e ol o
e
e

L
L
T

Nt
N et
R
R :
N
WY
AN ¢
ey
aa

o
Uy
e

A

3
7y
o
iy

ey

o

X
/2:? ”

s

Pl i
f’fﬂk- 2
s
w—

FIG. 6

AL SLOT
ION PATTERN OF A TWO-SIDED LONGITUDIN 0-591-TR43-504
PRADIAT

"

44

L]




gy
g 8

o
b

2

i

e

1-,:«,};,

i
-rr

&
5
»

T
W

mmmmm@
\\'ﬂ.\l\“\\\ \

\\n\\'\\\\l\

e R

\ -\\_‘}:::\\\_‘:::

N '\\\_\\*-o‘

0
L

W u:
\\\\\\\\\\\‘““ s
1)
W)

W

T
e
\

LA
T
\\\\\\\\\\

Il
T
I

i
il

o
)

AW
L

W

R

et
o »-
2
A \\\\ N
el
\\\\v\\

T
TR
\\\\\\\\\\\\\\\\:::::::::Si‘

\
“\\ R
T

m
i
mmlmll:mm

W,

g iy
g iy
g

7% %

RADIA
P
ATTERN OF A —_—
SMALL ONE
~§idke
HORIZ
ONTA
L

45

L
\\a :
\\\\\\\\\\\\\\\

W
A

APERTURE
D-591- TR45-508

sk




)
\ \'u.\\““":“l
: W !
\ \\\\\\\\\“ S
0
it
i
U 1]
i,
X l\\ oy
\‘\\\\\'- \\-\‘\:‘
\\\\ \E:_\‘h\‘ ‘\‘:;

e
Iu‘:t‘:#:';"‘]\\\\“
A il
b
il

At
\\\\l\\\\\\“\‘.
'\\\\\\_\\\\\\\ y
\\\\\\\\\v.\\\\:\\\“
\. o .\\. ‘\\\\\\
ey
gy
e B
gy ﬂ,”
T,
\,
R RS
\\\1\\\\\\\\\\“:‘ '
W ”
: iy i
,’;l 3 !,'!,&
v,‘;,,’»w;';;q
. ?,"7;'"'? i
iy

&
o

\\\\\\\\F \\\\\\\
A

RN

A
AT

S
N

\\\\\\\\\
“\\\\\\\\
B

!
)
i

B,

RADI

ATIO
N PA
TTER

NO
F A
SMA
LL TWO -~ SIDE
O H
ORIZ
ONTA
L A

PERT
URE

0-9
91- TR4S- 8506

46







I s O

| —tan x

L

N X1

| 3
~

13

1.5

1.0

0.5

)

le

|

FI1G. 10

A-591-TR45-8300

0.5+C(x) o
ROOTS OF THE EQUATION 0.5+S(x) tan x
48

R SO W=



FIG. Il

DIPOLES AND SLOTS WITH A HA

LF-PLANE SHEET

A-891-T

49

v



0.7

0.6
B n=|
b 2
0.5 < . I,(8)
N\ (n) 2
h A 2/ Tsing
N 2 2
0.4 A ==== K, (8) cos 8 sin8
N 2
\
h
N\
B
0.3
\
N\
0.2 N
! RS
Sn=i
\\‘
0.l :.\‘ sy
I\‘
J__:.-:":-.--- n=3 "!-.--
00 10 20 30 40 50 60 70 80 90

8 'N DEGREES

FIG. 12

129

2
THE FUNCTIONS () L AND K2 (6) cor'Bang

sing &

50

A-891-TR4S-8I0




S T ¢ RIS

PROJECT

RADIO SYSTEMS LABOL~TORY

OATE (o FILE NO.

IMPEDANCE DATA z SO ___ OHMMS

[
ANTENNA _432 STUB ON THE EDGE OF A 6'x8'4" ALUMINUM

SHEET OF THICKNESS |Ii

FIG. 13

INPUT INPEDANCE OF A STUB PLACED
AT THE EDGE OF A HALF - PLANE SHEET
A-591-TR48- 811

ol

i

pre—




RADIATION RESISTANCE — OHMS

100

A7 N
+ \
/ \
90 . \euf< GROUND PLANE
! \
! \ /'—-‘\
80 f \ £ A
/ T \ ;’_ N
7313 i \ \ A,‘F——‘"*\ A
* A\l
- —— - - - - - — po — v —— - P -
. ‘/ H i j‘/ﬁ /
/ | HALF-PLANE SHEET \
! . /
60 ] : e
-
| !
1
[
i
50 4
]
t
[ l
1
40 ]
|
t
|
30
l I
!
l ]
i
20 1
[
E
[ /
1oH—4 —
/
/
/
/
0
X x ar Sr Ir
4 2 4 ¥ 4 ¥ 3 v
kd
FIG. 14

RADIATION RESISTANCE OF A HALF-WAVE DIPOLE PLACED IN FRONT

OF A HALF-PLANE SHEET, AND IN FRONT OF A GROUND PLANE

32

A-8591-TR43-312

-




q
l

LR

-

2u, 6

100

o 60 120 180 240 300 360

%,

F1G. 15

RAOIATION RESISTANCE OF A HALF-WAVE DIPOLE
PLACED NEAR A WEDGE, Rd-a(kd)z"' IN OHMS

A-59i-TR4S-913

]
53




o

10.

11.

12.

13.

14.
15.
16.
177
18.
19.

TECHNICAL REPORTS IN TIIIS SERIES

Reports Issued on Contract AF 19(122) - 78

“Electric Dipoles in the Presence of Elliptic and Circular Cylinders’
by W. S. Lucke, September 1949,

“Assymmetrically-Fed Antennas,” by C. T. Tai, November 1949.
“Double-Fed and Courled-Antennas,’” by C. T. Tai, February 1949.

“Equivalent Radii of Thin Cylindrical Antennas with Arbitrary Cross
Sections, ' by Carson Flammer, March 1950.

‘“Use of Complementary Slots in Aircraft Antenna Impedance Measures- !
ments’’ by J. T. Bolljahn, February 1950.

“Wing-Cap and Tail-Cap Aircraft Antennas,” by J. V. N. Granger,
March 1950.

“Investigation of Current Distribution on Asymmetrically-Fed Antennas
by Means of Complementary Slots,’ by R. M. Hatch, Jr., February 1950.

“Electromagnetic [lesonance Phenomena in Aircraft Structures,” by
A. S. Dunbar, May 1950,

“The Effect of a Grounded Slab on the Radiation from a Line Source,”
by C. T. Tai, June 1950.

“A Method for the Calculation of Progressive-Phase Antennas for Shaped
Bzams,’ by A. S. Dunbar, June 1950.

‘“Admittance of an Open Ended Coaxial Line in an Infinite Grounded
Plane,’ by W. S. Lucke, June 1950

“A Variational Solution to the Problem of Cylindrical Antennas,’ by
C. T. Tai, August 1950.

“Uniform Progressive Phase Antennas Having Asymmetrical Amplitude
Distributions,’” by A. S. Dunbar, September 1950.

“Small Lipole-Type Antennas,’” by J. T. Bolljahn, September 1950.
“Tables of Modified Cosine Integrals,' January 1951.

“Prolate Spheroidal Wave Functions,’” by Carson Flammer, February 1951.
“An Antenna Evalustion Method,’ by W. S. Lucke, April 1951,

“Radar Response from Thin Wires,’” by C. T. Tai, March 1951,

“The Measurement of Low-Frequency Aircraft Antenna Properties Using
Electrostatic Methods,” by J. T. Bolljahn, Secptember 1951.

54




20. (Dropped)

e 21. ‘A Method for the Calculation of Progressive-Phase Antennas for
Shaped Beams,’ Part II, by A S. Dunbar, May 195].

22. ‘“The Prolate Spheroidal Monopole Antenna,” by Carson Flammer
[pending, Issued on contract AF 19(604) - 266].

23. ‘‘Variational Solution for the Problem of the Asymmetric Dipole, ” by }
I. Reese, August 1951, .

24. “Quasi-Static Solution for Diffraction of a Plane Electromagnetic
Wave by a Small Oblate Spheroid,’” by C. T. Tai, September 1952
[issued on contract AF 19(604) - 266].

25. “Transmission Through a Rectangular Aperture in an Infinitve Screen,”
by W. S. Lucke, September 1951.

Reports Issued on Contract AF 19(604) - 266
o 26. “Improvements in Instrumentation for the Investigation of Aircrafy
Antenna Radiation Patterns by Means of Scale Models,” by R. M.
Hatch, Jr., August 1952.

27. “The Vector Wave Solution of the Diffraction of Electromagnetic
Waves by Circular Disks and Apertures,” by Carson Flammer,
September 1952.

28. “An Investigation of the Distribution of Current on Collinear Para.
sitic Antenna Elements, ' by R. M. Hatch, Jr., August 1952.

29.

“On the Theory of Diffraction of Electromagnetic Waves by a Sphere, " !
o by C. T. Tai, Cctober 1952.

30. “High-Frequency Airborne Direction Finding,"” by P. S. Carter, Jr.,
December 1952.

31. “An Electrolytic Tank Method for Low-Frequency Loop Antennas Studies,”
by R. F. Reese, July 1953.

32. “Radiation from a Uniform Circular Loop Antenna in the Presence of a
Sphere,’ by C. T. Tai, December 1952.

33.

‘“A Computer for lse with Antenna Model Ranges,’” by C. E. Fisher,
February 1953.

34. “Tail-Cap Antenna Radiation Pattern Studies,” by J. H. Bryan,
January, 1953.

35. “Methods of Imporoving Tail Cap Antenna Patterns,” 'y A, R. Ellis

: (pending) 1
36. ‘“Mutual Admittance of Slots in Cylinder,” by W. S. Lucke, A
February, 1953.

TR

35

S EAARE S ST SR, W St




317.

38.

39.

40.

41.

42.

“Radio Interference from Corona Discharges,’ 'y R. L. Tanner,
April, 1953.

“Effects of Airframe Configuration cn low-Frequenc Aitenna
Characteristics,’” by C. M. Hoblitzell, April, 19:3.

“Reference Antenna for Use with Model Pattern Hang:s,K ' by
A. R. Ellis (pending).

“Analysis of the Overstation Behavior of Airboirne ADF Systems,”
by H. H. Ward, (pending).

“Some Electromagnetic Problems Involving a Sphese.” b, C. T. Tai,
April, 1953.

“Radiation Pattern Measurements of Stub and Slo: Ante..nas on Sphares
and Cylinders,” by J. Bain, April, 1953,

“Current Distribution on Wing-Cap and Tail-Cap / :tennzs,’” by Irene
C. Carswell, May 1954,

“A Study of Radiating Structures for Perpendicul:rly-Filar.zcd rFlusn
Radar Antennas,' by Edward M. T. Jones and Seymjur B. Cohn,
July 1953.

“Radiation from Current Elements and Apertures i: the Presence of
a Perfectly Conducting Half-Plane Sheet,” by C. T. Tai, July 1554




